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Enhanced radiative heat transfer between nanostructured gold plates
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We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering
theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping
the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided
modes as a function of the grating’s geometry.

DOI: 10.1103/PhysRevB.85.180301 PACS number(s): 44.40.+a, 42.50.−p, 68.35.−p

The far-field radiative heat transfer between good conduc-
tive metals is very low at room temperature, since they are
very good reflectors at the infrared frequencies of blackbody
radiation. The radiative heat transfer is enhanced in the near
field, due to the contribution of evanescent surface modes.1–3

Polar materials such as SiO2 or SiC are in addition favored by
the contribution of surface phonon polaritons whose resonance
frequencies lie in the infrared.4 There is an analogous effect
for metals arising from the surface plasmon resonances but
those lie in the ultraviolet and do not contribute significantly
to the heat transfer.5

It has been shown recently that the radiative heat transfer
can be controlled by nanostructuring the interfaces periodi-
cally. When the period d is much smaller than the wavelength
λ and the separation distance L, the system can be treated using
an effective refractive index for the equivalent homogeneous
medium. It has been shown that the induced anisotropy
introduces additional modes6 and also allows modulating the
flux.7 For periods on the order of the wavelength, a full solution
of Maxwell equations is needed. The heat transfer between
two periodic slabs has been studied within a two-dimensional
approximation for p polarization using a finite difference time
domain (FDTD) technique.8 A flux enhancement attributed to
the excitation of the structure’s modes was found. While FDTD
allows modeling complex shapes easily, dealing with bulk
three-dimensional (3D) media and accounting for polarization
effects has not been achieved so far, to the best of our
knowledge.

In this Rapid Communication, we compute the radiative
heat transfer between one-dimensional (1D) gold lamellar grat-
ings in the framework of the scattering theory. We do include
all propagation directions (the so-called conical diffraction)
and all polarization states, which is of critical importance in
order to deal quantitatively with cross-polarization effects.9

The scattering theory is the most successful technique for
treating the Casimir effect between bodies at thermodynamic
equilibrium.10,11 The method determines the electromagnetic
field in the space between the two bodies in interaction in
order to compute the Casimir force in terms of the reflection
amplitudes on the two bodies. When the two bodies are not at
the same temperature, there is a net flux of energy transferred
from the warm body to the cold one. Recently, this heat transfer
problem between two bodies kept at different temperatures has

also been formulated in terms of the scattering properties of
the bodies.12–15

In the following, we use the scattering amplitudes which
have already been calculated for studying the Casimir in-
teraction between 1D lamellar gratings16 and deduce the
heat flux when the two bodies are at different temperatures.
We show that the heat flux is largely enhanced when the
corrugation depth is increased while keeping the distance of
closest approach fixed. We attribute the heat flux growth to
the excitation of guided modes and surface plasmons whose
frequencies change with the corrugation depth.

We consider the cavity formed by two gratings separated
by a distance of closest approach L measured so as to vanish
at contact (Fig. 1). The gratings are aligned and not displaced
laterally. We model the gold permittivity with a Drude model

ε(ω) = 1 − ω2
P

ω(ω+ıγ ) with ωP = 9 eV and γ = 35 meV. We
write the heat flux q between two bodies at temperatures T1

and T2 as3

q =
∫∫∫ [

eT1 (ω) − eT2 (ω)
]
TL(k,ω)

dωd2k
(2π )3

, (1)

where eT (ω) = h̄ω(eh̄ω/kBT − 1)−1 is the mean energy per
mode of frequency ω at temperature T , while TL(k,ω) is
the sum (trace) of the transmission factors for all the modes
of frequency ω and lateral wave vector k between the two
gratings separated by a distance L.17,18 The expression of this
transmission factor is given by scattering amplitudes

TL(k,ω) = tr(DW1D†W2), (2a)

D = (1 − S1S2)−1, (2b)

W1 = �
pw

−1 − S1�
pw

−1 S1
† + S1�

ew
−1 − �ew

−1S1
†, (2c)

W2 = �
pw

1 − S2
†�pw

1 S2 + S2
†�ew

1 − �ew
1 S2, (2d)

S1 = R1(k,ω), (2e)

S2 = eıkzLR2(k,ω)eıkzL. (2f)

Mode counting is defined over frequency ω and lateral wave
vector k restricted to the first Brillouin zone, due to the Bloch
theorem. kz =

√
ω2/c2 − k2 is the longitudinal wave vector

for the Fabry-Pérot cavity, with the principal square root used
in its definition −π

2 < arg kz � π
2 . The operators �pw/ew

n =
kn
z �

pw/ew involve the projectors �pw/ew on the propagative
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FIG. 1. The conventions used in the present article. The grating
period is d , the corrugation depth is a, and the distance of closest
approach of the two gratings is L. The lines of the grating are along
the y direction, while the Fabry-Pérot cavity between the two gratings
is along the z direction.

or the evanescent sector, respectively. S1 and S2 are scattering
operators defined from the reflection operators R1(k,ω) and
R2(k,ω). Si are represented in the basis of the wave vectors
{k(n)} coupled by the grating. We define k(n) = k + n 2π

d
êx

where d is the grating period, êx the direction perpendicular to
the lines of the grating (see Fig. 1), and n runs from −N

to +N , where N is the highest diffraction order retained.
The operators Si are square matrices of dimension 2(2N + 1)
(Ref. 16) as well as all bold operators appearing in Eqs. (2).
All scattering operators appearing in Eqs. (2) are represented
in the (s/p) (also denoted TE/TM) polarization basis, well
adapted to propagative fields. The reflection operators are cal-
culated following the rigorous coupled-wave analysis (RCWA)
method described in Ref. 19: The fields are expressed in terms
of a Rayleigh expansion in both homogeneous regions z < 0
and z > a. In the corrugated region 0 > z > a, the fields are
developed in Fourier components. The Maxwell equations
are solved in each region and writing the continuity of each
Rayleigh and Fourier components at the boundaries z = 0
and z = a leads to the reflection and transmission coefficients
for the grating. In the limit of an infinite number of Fourier
harmonics, this method solves exactly the diffraction of the
fields by the grating. Metallic gratings are known to be difficult
to account for using the RCWA method. We incorporate in
the RCWA formalism the modifications presented in Ref. 20
which greatly improve the convergence rate for the reflection
coefficients of a p-polarized light impinging on a metallic
grating, and our calculations are performed with N = 51
which shows converged results.

In the following, we apply formula (1) to compute the
heat transfer coefficient h defined as h = q

T1−T2
for two

temperatures T1 and T2 close enough to each other, say,
for example, T1 = 310 K and T2 = 290 K. We note that
eT1 − eT2 acts as a cutoff function for frequencies greater
than the thermal frequency ωT = 2πc

λT
≈ 2.5 × 1014 rad s−1

(λT ≈ 7.6 μm). The transmission factor TL(k,ω) thus exhibits
the mode structure for the problem under study (Fig. 1) while
(1) integrates the contributions of all these modes to the heat

μ

FIG. 2. (Color online) The enhancement factor � between two
gold gratings as a function of the depth a of the corrugations, with
the distance of closest approach kept fixed L = 1 μm. Blue solid
curve (triangles): period d = 1 μm. Red solid curve (circles): period
d = 2.5 μm. Green dashed curve: period d = 10 μm. Black dotted
curve: proximity approximation.

transfer, taking into account the values of their frequencies
with respect to ωT (more discussions below).

For a depth of the corrugation a = 0, we recover the heat
transfer coefficient h0(L) = 0.16 W m−2K−1 between two
gold plates separated by a distance L = 1 μm. For a non-null
depth a, we introduce the factor of enhancement of heat
transfer with respect to noncorrugated plates

� = h(L)

h0(L)
. (3)

We present in Fig. 2 the enhancement factor � as a function of
the corrugation depth a, with the distance of closest approach
L = 1 μm and the filling factor p = 0.5 kept fixed. The blue
solid curve corresponds to a period d = 1 μm for the gratings
while the red solid curve corresponds to a period d = 2.5 μm.
The dashed curve corresponds to a period d = 10 μm. As the
corrugations become deeper, we see a striking increase in the
heat transfer coefficient. We note that the enhancement factor
is largely independent of the grating period up to a corrugation
depth a ≈ 1 μm. For a period d = 1 μm for which the effect
is more important, we get an enhancement up to a factor 10
for a = 6 μm. For a period d = 2.5 μm, the enhancement
reaches nearly a factor 4 for a = 6 μm. For the largest period
d = 10 μm, the enhancement still reaches nearly a factor 2 at
a = 6 μm.

For comparison, we have shown as the dotted line in Fig. 2
the prediction of the proximity approximation (PA) which
amounts to adding plane-plane heat transfer contributions, as
if they were independent,

�PA = p + (1 − p)
h0(L + 2a)

h0(L)
. (4)

As expected, the PA predicts a decrease of � when a is
increased, in complete contradiction with the exact results
shown by the solid and dashed curves.

In the remainder of this Rapid Communication, we analyze
the electromagnetic mode structure in order to explain the
increase of the heat transfer.17,18 To this aim, we use the
scattering formula (1) and show that, as we increase the
corrugation depth, some modes of the system are indeed
brought to the infrared frequencies and thus are able to
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FIG. 3. (Color online) The transmission factor for two gold
gratings as a function of the frequency ω and the corrugations depth
a. The lower curve is for plane-plane a = 0 while the upper one is
for a corrugations depth a = 3 μm. The vertical red line is the light
line. The horizontal arrow at a = 1.5 μm shows a cut of this plot
represented on Fig. 4.

contribute to the heat transfer. The mode structure is described
by the transmission factor TL(k,ω) that reaches its maximum
value 1 at the resonances of the corrugated cavity. Our system
is periodic so that the mode structure, distributed over the
whole range of wave vectors in the absence of corrugations,
now shows many branches folded in the first Brillouin zone.
More precisely, there are 2(2N + 1) branches where the factor
2 is due to the two polarizations and the factor 2N + 1 is the
number of orders (or branches) used when taking into account
mode coupling by diffraction on the gratings.

We represent in Fig. 3 the sum of transmission factors
TL(k,ω) over all polarizations and all branches. It is shown as
a function of the frequency ω and the depth of the corrugations
a for a fixed value of the transverse wave vector k = ( π

2d
,0),

here chosen to be in the middle of the positive-kx first Brillouin
zone. The plot corresponds to the period d = 2.5 μm, which
was shown as the solid curve in Fig. 2. The vertical red line
represents the light line ω = ckx ≈ 1.88 × 1014 rad s−1.

It clearly appears in Fig. 3 that the transmission factor takes
significant values only on resonances which correspond to
the mode structure of the corrugated cavity. The transmission
factor TL(k,ω) goes to a maximum value of 1 for each
nondegenerate mode (k,ω); it can be 2 if two modes cross
each other and we see one of these occurrences in the figure.
The general trend is clear on the diagram: As the depth a of the
corrugations is increased, new modes appear, with frequencies
decreasing as a increases. When these modes enter into the
thermal window ω � ωT they contribute more and more to the
heat transfer. This explains the enhancement of the heat flux,
due to the presence of additional modes in the thermal window
for a deeply corrugated structure.

We now examine in more detail the nature of the modes.
While varying the corrugation depth a from 0 to 3 μm we
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FIG. 4. (Color online) The transmission factor for two gold
gratings with corrugation depth a = 1.5 μm as a function of
frequency ω. The arrows indicate the position of the modes in a
direct mode calculation [red (gray) for s polarization and black for p

polarization]. The dashed curve is the function
eT1 −eT2

kB(T1−T2) .

can follow the evolution of each mode. Note that, for ky = 0,
the polarizations σ = s and σ = p are not mixed (however,
the computation of h takes into account all modes for which
polarization mixing is important).

We show in Fig. 4 the modes calculated for a particular
corrugation depth a = 1.5 μm indicated by the red horizontal
line on Fig. 3. The position of the peaks have been confirmed
through a direct mode calculation21 of the eigenfrequencies
of the structure modes obtained for p (black arrows) and
s (red arrows) polarizations. In addition to the excellent
agreement between the peaks of the transmission factor and
the directly calculated modes (arrows on Fig. 4), direct mode
calculations show the fields and, therefore, allow us to identify
the first few modes. For the second p polarization and the
first s polarization modes appearing at ω ≈ 2.4 × 1014 rad s−1

and ω ≈ 6.5 × 1014 rad s−1 in particular, the frequencies are
largely independent upon the value of kx , which is usually
the signature of guided modes. By looking at the fields
corresponding to those two modes, we indeed confirmed that
the electric field is to some extent confined in the waveguides
formed by the corrugations.

It is also worth discussing the shape of the resonance
curve drawn by the variation of the transmission factor in
the vicinity of a mode. In Fig. 5, we focus on the modes which
lie inside the thermal window. In the case considered here
of sharp, isolated modes, the resonance of the transmission
factor shows a Lorentzian profile. We have checked that the
two parameters of this profile are identified respectively to
the real and imaginary parts of the complex frequency, with
mode calculation of the dissipative structure defined with
complex frequencies and real wave vectors.3 This proves that
the variation of the transmission factor contains all the relevant
information about the mode structure. Not only the frequencies
but also their finite lifetime are well described in the case
considered here of lossy materials.

This discussion allows one to predict the effect of a change
of the dissipation parameter γ . As this parameter is the only
one to determine the widths of the peaks in the transmission
factor TL(k,ω), one deduces that these widths vary linearly
with γ . As a direct consequence of Eq. (1) and as long as
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FIG. 5. (Color online) Same as Fig. 4 for the first two modes
which are in the thermal window. Each peak can be fitted by a
Lorentzian of resonance frequency ω0 and half width at half maximum
	. The dashed curve is the function

eT1 −eT2
kB(T1−T2) .

the modes remain sharp and isolated, it follows that the heat
fluxes vary in proportion of γ , so that the enhancement factor
�, defined in Eq. (3) and drawn on Fig. 2, is independent of
the dissipation parameter γ .

We have theoretically demonstrated the enhancement of
the heat transfer between two nanocorrugated gold plates
in comparison with flat plates with the same distance of
closest approach. This enhancement is due to the presence of

additional modes in the thermal frequency window contribut-
ing to the heat transfer. We have described all the relevant
information about the mode structure in terms of the transmis-
sion factor TL(k,ω) which appears in the scattering formula
for the heat flux. We have discussed the enhancement of the
heat transfer in a regime where the three characteristic lengths
of the problem (the distance L between the gratings, the period
d of the gratings, and the height a of the corrugations) are of
the same order. We stress that neither the proximity nor the
effective medium approximations can work in this regime. We
have in fact shown that the proximity approximation predicts
a decrease of the heat transfer, in complete contradiction with
the striking enhancement of the heat flux observed in the exact
results.

The authors thank the ESF Research Networking Pro-
gramme CASIMIR (www.casimir-network.com) for providing
excellent possibilities for discussions and exchange. The
research described here has been supported by Triangle de
la Physique Contract No. EIEM 2010-037T. This work was
carried out under the auspices of the National Nuclear Security
Administration of the US Department of Energy at Los
Alamos National Laboratory under Contract No. DE-AC52-
06NA25396. R.G. and D.A.R.D. thank LANL and ENS,
respectively, for funding their stay at these institutions, where
part of this work was done.

1D. Polder and M. V. Hove, Phys. Rev. B 4, 3303
(1971).

2A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291
(2007).

3K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet,
Surf. Sci. Rep. 57, 59 (2005).

4J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Appl. Phys.
Lett. 78, 2931 (2011).

5S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909
(2009).

6S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa,
K. Joulain, and J.-J. Greffet, Opt. Express 19, A1088
(2011).

7S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, Appl. Phys. Lett.
98, 243102 (2011).

8A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D.
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